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Numerical simulations are used to study a series of reduced models of homogeneous,
rotating flow at moderate Rossby numbers Ro ≈ 0.1, for which both numerical and
physical experiments show the generation of quasi-two-dimensional vortices and
symmetry breaking in favour of cyclones. A random force at intermediate scales injects
energy at a constant average rate. The nonlinear term of reduced models is restricted
to include only a subset of triad interactions in Fourier space. Reduced models of near-
resonant, non-resonant and near two-dimensional triad interactions are considered.
Only the model of near resonances reproduces all of the important characteristics
of the full simulations: (i) efficient energy transfer from three-dimensional forced
modes to two-dimensional large-scale modes, (ii) large-scale energy spectra scaling
approximately as k−3

h , where kh is the wavenumber in the plane perpendicular to the
axis of rotation, and (iii) strong cyclone/anticyclone asymmetry in favour of cyclones.
Non-resonances, defined as the complement to near resonances, act to reduce the
energy transfer to large scales.

1. Introduction
There has been a series of numerical investigations of anisotropic wave-turbulence

dynamics in dispersive-wave models of geophysical flows, forced at intermediate
scales. Interest has focused on energy accumulation in the large-scale zero-frequency
modes and the corresponding generation of anisotropic coherent structures, such as
large-scale zonal flows and vortices. Identifying the mechanisms for the formation of
such structures in idealized simulations may help in understanding their formation
in planetary flows. Chekhlov et al. (1996), followed by Smith & Waleffe (1999),
Marcus, Kundu & Lee (2000), Huang, Galperin & Sukoriansky (2001), Manfroi &
Young (2002) and Smith (2004), observed the generation of zonal flows on the two-
dimensional β-plane. In homogeneous rotating and stratified flow governed by the
three-dimensional Boussinesq equations, Smith & Waleffe (2002) observed different
large-scale structures, ranging from horizontal shear layers to vortical columns,
depending on the ratio N/f , where N is the buoyancy frequency and f is the
Coriolis parameter (twice the frame rotation rate).

For purely rotating flows, energy input by intermediate-scale forcing has been ob-
served to self-organize into large-scale columnar vortices aligned with the rotation axis.
Following convention, the axis of rotation is taken to be ẑ, and kz (kh = (k2

x + k2
y)

1/2)
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is the component of the wavevector parallel (perpendicular) to the rotation axis.
The two-dimensional plane is the horizontal plane with kz = 0. In homogeneous
flows, Hossain (1994), Smith & Waleffe (1999) and Chen et al. (2004) observed
significant transfer of energy from the forced, three-dimensional intermediate scales
to two-dimensional large scales. For flow in a periodic cube with resolution 1283

Fourier modes, Smith & Waleffe (1999) noted a symmetry breaking in favour of
large-scale cyclonic vortical columns for moderate Rossby numbers below an O(1)
critical value. In that study, the Rossby number was based on the rate of energy
input and the peak wavenumber of the force, which was white in time with Gaussian
spatial correlation function. Lollini & Godeferd (1999) studied the emergence of
vortical columns in inhomogeneous rotating flows, with confinement in the direction
of the rotation axis and forcing localized in physical space. They found that cyclones
dominated anticyclones for high Reynolds numbers and moderate local Rossby
numbers Ro l ≈ 0.2–0.3, based on a local velocity and length scale away from the
forcing. The latter numerical experiments were designed to mimic the laboratory
experiments by Hopfinger, Browand & Gagne (1982), who used an oscillating grid
to produce turbulence in a rotating tank. With grid Rossby numbers in the range
Rog ≈ 3–33, defined as the ratio of grid to Coriolis frequencies, Hopfinger et al. (1982)
noted the dominance of cyclonic vortices for the smaller grid Rossby numbers; the
local Rossby number away from the grid was Ro l ≈ 0.05. Baroud et al. (2003) studied
flow in a rotating annulus with forcing created by pumping water into (out of) the
annulus through an inner (outer) ring of holes on the bottom of the channel. At
Ro ≈ 0.1, this set-up leads to a nearly two-dimensional flow in which vortices are
advected by a counter-rotating azimuthal jet. Their Rossby number was defined as
the ratio of the root-mean-square vorticity to the Coriolis frequency. Baroud et al.
(2003) observed that cyclones were more likely to preserve their shape and to be
carried azimuthally by the jet without losing their coherence. Well-defined vortices
were also observed in laboratory experiments by Longhetto et al. (2002) using the
‘Coriolis’ rotating tank in Grenoble. Turbulence was initially generated by horizontal
motion of a rake, and then allowed to develop freely. Cyclones were in general much
stronger and lived longer than anticyclones for values of the initial Rossby number
of approximately one, based on the speed and teeth spacing of the rake.

Our focus is on the role of near-resonant triad interactions in three-dimensional
rotating flow forced at intermediate scales. We consider moderate Rossby numbers
Ro ≈ 0.1, for which cyclone dominance appears to be well-established by both
numerical and laboratory experiments with forcing (despite different definitions for
the Rossby number). Nonlinear two-dimensionalization, the emergence of vortices and
cyclone/anti-cyclone asymmetry have also been observed in physical and numerical
experiments of decaying rotating turbulence. The literature on rotating decay has
provided important insights into the development of anisotropy in rotating flows in
general, and is discussed in § 2.

For simplicity we consider homogeneous flow in a periodic cube, with constant back-
ground rotation rate. We ask if a reduced model including only interactions between
near resonances can reproduce three important features observed at Ro ≈ 0.1 in
simulations including all triad interactions: (i) significant energy transfer from forced
three-dimensional intermediate scales to two-dimensional large scales; (ii) scaling of
the large-scale energy spectra approximately E(k) ≈ E(kh; kz = 0) ∝ k−3

h , and (iii) domi-
nance of cyclonic vortical columns (Hossain 1994; Smith & Waleffe 1999). Near-
resonant triads satisfy σs(k)+σs( p)+σs(q) = O(Ro), where σs(k) = skz/kh for s = ± 1
are the wave frequencies of the two linear eigenmodes with wavevector k, and the
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velocity field is represented as a superposition of inertial waves (the linear eigenmodes).
Using multiple-scales analysis, Newell (1969) showed that near resonances, in addition
to exact resonances with σs(k) + σs( p) + σs(q) = 0, are important on a time scale of
O(1/Ro), where the linear time scale is O(Ro).

It has been recognized for many years that the nonlinear two-dimensionalization
observed in both forced and decaying, rotating turbulence does not follow directly
from the Taylor–Proudman theorem for inviscid slowly varying flow in the linear limit.
Furthermore, since the Taylor–Proudman theorem says nothing about the energy level
in the component of velocity parallel to the rotation axis as compared to the energy
level in the perpendicular velocities, the theorem does not predict the observed
tendency toward two-dimensional and two-component flow, with much lower levels of
energy in the parallel velocity component (e.g. Cambon, Mansour & Godeferd 1997;
Smith & Waleffe 1999). Recently, Constantin (2004) obtained a bound on the parallel
gradients of the Lagrangian displacement that vanishes linearly with the local Rossby
number.

Chen et al. (2004) performed periodic cube simulations with the same resolution
(1283 modes) as Smith & Waleffe (1999), but with significantly smaller Rossby
numbers (as small as Ro =(εf k2

f )1/3/f ≈ 10−3, where εf and kf are, respectively, the
energy input rate and the peak wavenumber of the force). Their purpose was to
demonstrate numerically the decoupling between three-dimensional modes and two-
dimensional modes with kz = 0, at first order in a Rossby number expansion. First-
order decoupling was shown for a general bounded domain by Greenspan (1969), and
for periodic domains by Waleffe (1993), Embid & Majda (1996) and Babin, Mahalov &
Nicolaenko (1996, 2000). In a wave decomposition, first-order interactions are between
exactly resonant triads satisfying σs(k) + σs(q) + σs(q) = 0. The two-dimensional
modes with kz =0 form a slow manifold and interactions between them are trivially
resonant. First-order decoupling between two-dimensional and three-dimensional
modes means that resonant interactions between two inertial waves and one two-
dimensional mode cannot transfer energy directly to the two-dimensional mode.
With forcing at intermediate scales, and for Ro ≈ 10−3, Chen et al. (2004) observed
an inverse cascade among two-dimensional modes only, with large-scale energy
spectrum E(kh) ∝ k

−5/3
h and no asymmetry (see also Kraichnan 1967; Smith & Yakhot

1994). We conjecture that the resolution of 1283 Fourier modes is not sufficient to
resolve the near-resonant interactions with σs(k)+σs( p)+σs(q) = O(10−3) that would
lead to non-trivial coupling for nonlinear time scales, in this case on the order of one
thousand times longer than the linear time scale.

First-order decoupling between the slow manifold and fast waves is an important
feature of many dispersive-wave models for geophysical flows, and in particular
for β-plane flow (Longuet-Higgins & Gill 1967), for three-dimensional rotating,
stratified flow (Bartello 1995; Embid & Majda 1998; Majda & Embid 1998) and for
purely stratified flow (Phillips 1968; Lelong & Riley 1991). However, near-resonant
triads play a role for moderate Rossby numbers Ro ≈ 0.1, in addition to exact
resonances (see e.g. Newell 1969). They are likely also to play a role for any small
finite Rossby number on long time scales in sufficiently large domains (see the
discussion in the next paragraph). Finally, since two-dimensional interactions are
not affected by rotation, the symmetry breaking between cyclones and anticyclones
that has been observed in numerical and laboratory experiments must originate from
near-resonant triads and/or other higher-order effects (e.g. resonant quartets). Our
numerical simulations at moderate Rossby numbers indicate that near resonances are
responsible for increased energy transfer to large scales resulting in steeper large-scale
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energy spectra E(k) ≈ E(kh, kz = 0) ∝ k−3
h , as well as strong asymmetry in favour of

cyclones.
When discussing the slow manifold and first-order decoupling/higher-order

coupling, one must take care to distinguish between the discrete wavenumbers in
periodic domains and continuous wavenumbers in an infinite domain. Indeed, both
periodic domains and infinite domains are idealizations. Neither reflects the complete
dynamics of physical flows in bounded domains, with other complexities such as
boundary-layer eruptions and energy transfer by wave reflections (Greenspan 1990).
In an unbounded domain, exact resonances are always present, but comprise a set of
measure zero. For continuous wavenumbers, Cambon, Rubinstein & Godeferd (2004)
have shown that first-order decoupling is invalid for kz → 0, since coupling terms arise
from principal-value integrals corresponding to off-resonant interactions. In periodic
domains, wavenumbers are discrete and the existence and number of exact resonances
depends on domain size and aspect ratio. Purely two-dimensional interactions can be
enhanced in relatively low resolutions where they receive a significant fraction of the
energy input, and where exact/near resonances are becoming negligible for sufficiently
small Ro. Simulations at finite resolution and finite times cannot necessarily capture
the long-time dynamics implied by statistical closure theories or higher-order multiple-
scales analyses. Differences between discrete and continuous wavenumbers have also
been discussed in the context of other wave-turbulence systems. In studies of capillary
waves, Pushkarev & Zakharov (2000) and Connaughton, Nazarenko & Pushkarev
(2001) showed that for very low levels of nonlinearity, the number of near resonances
captured by integer-valued wavevectors in a periodic box is insufficient to reflect
the structure of the resonant manifolds, and that the effects of discreteness begin to
play a role. In the numerical experiments by Pushkarev & Zakharov (2000), these
discreteness effects lead to deviations from weak turbulence predictions, and in the
extreme, they halt the nonlinear transfer of energy altogether. In our simulations of
rotating flow at moderate Rossby number Ro ≈ 0.1, the nonlinearity is large enough
so that near resonances are adequately captured by the computational grid, and the
time scale for coupling between three-dimensional fast waves and two-dimensional
slow modes is not prohibitively long. With our non-dimensionalization based on the
dimensional time scale L/U , the linear time scale is O(Ro), the nonlinear time scale
for exact resonances is O(1), and the time scale for near resonances is O(1/Ro) (see
Newell 1969 and § 3).

The fluid dynamics governed by the Navier–Stokes equations in a rotating frame
is of fundamental interest, but also has connection to geophysical applications. A
predominance of cyclones is observed in mid-latitude atmospheric and oceanic flows.
Pedlosky (1986, Chapter 1) estimates Rossby numbers Ro ≈ 0.1 for flows in the Gulf
Stream and for synoptic-scale flows at mid-latitudes. For example, typical mid-latitude
synoptic-scale velocities U and length scales L are, respectively, U ≈ 20 m s−1 and
L ≈ 1000 km. Then the rotation rate Ω = 7.3 × 10−5 s−1 gives Ro = U/(2ΩL) ≈ 0.14.
In many atmospheric and oceanic flows, both rotation and stratification are impor-
tant. Although it is well-known that the quasi-geostrophic (QG) approximation
for rotating and stratified flow does not exhibit asymmetry (see e.g. McWilliams
1990; McWilliams, Weiss & Yavneh 1999), next-order corrections to quasi-geostrophy
lead to symmetry breaking in favour of cyclones (Hakim, Snyder & Muraki 2002;
Muraki, Snyder & Rotunno 1999). The QG model and corrections to QG are simpli-
fications of the Boussinesq equations assuming large horizontal length scales and the
hydrostatic balance (Pedlosky 1986; Salmon 1998). On the other hand, numerical
decay from balanced initial conditions of the rotating shallow-water equations leads
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to a predominance of anticyclones as the initial Froude number is increased, where
the Froude number is the ratio of characteristic fluid and gravitational speeds
(Polvani et al. 1994). The latter result holds for Froude numbers Fr in the range
0.04 � Fr � 0.30 and over a wide range of initial Rossby numbers 0.01 � Ro � 20.
Symmetry breaking has also been observed in the non-hydrostatic approximate
equations derived by Julien, Knobloch & Werne (1998), valid for rapid rotation and
small |kz|/kh. There is not necessarily a direct connection between the length and time
scales associated with geophysical models and those of fundamental turbulence studies
such as the present numerical investigation. However, it is likely that mechanisms
for energy transfer and symmetry breaking in idealized simulations may also play
a role in the dynamics of geophysical flows. For example, in the context of the
nonlinear Schrödinger equation (which admits four-wave resonances), resonance
broadening has been linked to the occurrence of freak waves in the ocean (Janssen
2002). Understanding the mechanisms for cyclone/anticyclone asymmetry and wave-
mean flow interactions in rotating turbulence may help toward understanding similar
observed phenomena in geophysical flows.

The remainder of the paper is organized as follows. The literature on rotating
decay and statistical closure theories is reviewed in § 2, since this literature provides
understanding of anisotropy development in rotating flows in general. In § 3, properties
of the basic equations are reviewed, and the concept of a reduced model is introduced.
Section 4 explains how we numerically calculate the nonlinear interactions for reduced
models, when the quadratic nonlinearity can no longer be computed in physical
space using fast Fourier transforms. The simulation results for three-dimensional
rotating flow are presented in § 5, including reduced models for near resonances,
non-resonances, and near-two-dimensional interactions. A summary and discussion
are given in § 6.

2. Development of anisotropy in decaying rotating flows
The development of anisotropy in rotating flows has been studied most extensively

for decaying rotating turbulence. The understanding developed in this literature is
important background for all work on rotating flows, and is thus discussed below.

Pioneering experimental studies were conducted by Wigeland & Nagib (1978)
and Jacquin et al. (1990). In both sets of experiments, turbulence in solid body
rotation was generated by a flow of air passing through a rotating honeycomb
and a turbulence-producing grid. Compared to isotropic decay, they observed an
increase in the integral length scales involving velocity components perpendicular
to the rotation axis. In contrast to the integral length scales, the Reynolds stress
tensor remained nearly isotropic in both experiments. The Reynolds stress tensor,
however, can be an ambiguous indicator of anisotropy as the flow develops toward
a quasi-two-dimensional state, although strict two-dimensionality is not achieved.
Isotropic three-dimensional three-component flow has 〈u2〉 = 〈v2〉 = 〈w2〉, where the
velocity is u = u(x)x̂ + v(x) ŷ + w(x) ẑ and 〈〉 indicates an ensemble average. For a
general, statistically axisymmetric two-dimensional three-component incompressible
flow, the velocity satisfies 〈u2〉 = 〈v2〉 = 〈w2〉/2, with u = u(x, y)x̂ +v(x, y) ŷ+w(x, y) ẑ.
The velocity component w in two-dimensional three-component flow is effectively a
passive scalar. Mixing of w in two-dimensional three-component flow would then lead,
presumably, to two-dimensional two-component flow, with 〈u2〉 = 〈v2〉 and 〈w2〉 =0.
Thus, during decay from three-dimensional three-component initial conditions, the
quantity A= 〈w2〉/(〈u2〉 + 〈v2〉) grows initially from one-half (isotropy) as the flow
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tends toward an axisymmetric state (Cambon et al. 1997; Morinishi, Nakabayashi &
Ren 2001). The value one for two-dimensional three-component flow is not reached,
however, perhaps because partial mixing of w drives the value of A back down
(A= 0 for two-dimensional two-component flow). These two competing tendencies
obscure the effects of rotation if 〈w2〉/(〈u2〉 + 〈v2〉) and/or similar quantities are used
to monitor the flow (Cambon et al. 1997, F. Waleffe, private communication).

Following Wigeland & Nagib (1978) and Jacquin et al. (1990) came a series of
numerical experiments on rotating decay, using pseudo-spectral methods in a periodic
domain (Bardina, Ferziger & Rogallo 1985; Bartello, Metais & Lesieur 1994; Cambon,
Mansour & Squires 1994; Cambon et al. 1997). Consistent with the experiments,
the direct numerical simulations (DNS) with 643 Fourier modes by Bardina et al.
(1985) and Bartello et al. (1994) showed only a tendency toward two-dimensional
flow by an increase in the appropriate integral length scales. However, the large-eddy
simulations (LES) and hyperviscosity runs by Bartello et al. (1994) clearly showed the
emergence of two-dimensional cyclonic vortices (and few or no anticyclonic vortices).
The hyperviscosity runs suggested a range of Rossby numbers 0.1 <Ro < 0.4 where
three-dimensional modes most efficiently transfer energy to two-dimensional modes in
the form of cyclonic vortices. Their Rossby number was defined by the initial velocity
field as the ratio of root-mean-square vorticity in the ẑ-direction to the Coriolis
frequency.

Cambon et al. (1994) conducted a series of LES at higher resolution 128×128×512,
aimed at simulating growth of the integral length scales in an infinite domain, and
demonstrated the existence of two transitions in the development of anisotropy. They
defined a macro-Rossby number based on the root-mean-square velocity and an
integral length scale. In addition, they defined the micro-Rossby number as the ratio
of the root-mean-square vorticity and the Coriolis frequency. Anisotropy of the length
scales was triggered when the macro-Rossby number was decreased to about unity;
maximum anisotropy of the length scales and Reynolds stresses was achieved for
macro-Rossby number smaller than unity but micro-Rossby number somewhat larger
than unity (see also Cambon et al. 1997; Canuto & Dubovikov 1997; Morinishi et al.
2001).

Cambon et al. (1997) discussed how anisotropy can be fully captured in statistical
theory. Representing the velocity field as a superposition of inertial waves with
amplitudes bs(k) (see (3.7)), the ensemble-averaged energy and helicity are, respectively,
e(kh, kz) = (〈b∗

+b+〉 + 〈b∗
−b−〉)/2 and h(kh, kz) = k(〈b∗

+b+〉 − 〈b∗
−b−〉)/2, where s = ±, ∗

denotes the complex conjugate and brackets 〈〉 indicate an ensemble average. Although
it is common to develop statistical theory based on energy and helicity, there is an
additional second-order correlation Z = 〈b∗

+b−〉. The quantity Z is zero in three-
dimensional three-component isotropic flow, whereas Z = −e in two-dimensional
two-component flow, and in general Z provides critical information about the
polarization (a reduction in the number of components) of the flow. In fact, a
full description of the Reynolds stress requires all three quantities e, h and Z.
Cambon et al. (1997) developed a model for rotating turbulence by EDQNM-type
closure of the exact equations for energy e, helicity h and polarization Z (see also
Cambon & Jacquin 1989; Jacquin et al. 1990). The EDQNM-type closure is based
on helical modes, and is consistent with classical wave-turbulence theory if both the
Rossby number and the heuristic damping effects vanish. New simulations of the
closure equations suggest that the cyclone/anticyclone asymmetry is not outside
the scope of statistical closure methods at finite Rossby number (C. Cambon, pri-
vate communication).
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Both weakly nonlinear theory and statistical theory of wave-turbulence systems
are based on resonant interactions. Some of the original multiple-scales analyses are
given by Benney & Saffman (1966) and Newell (1969). The Hamiltonian formulation
of weak turbulence is described in Zakharov, Lvov & Falkovich (1992); in the
limit Ro → 0, the effects of exact resonances are retained in the equation for
the ensemble-averaged second-order moments, which are closed using a random
phase approximation. Galtier (2003) applied the Kuznetsov–Zakharov conformal
transformation to the wave-kinetic equations for the case of nearly horizontal
wavenumbers with |kz|/kh � 1, and thereby derived the angle-dependent anisotropic

energy spectrum e(kh, kz) ∝ k
−7/2
h |kz|−1/2 (Galtier 2003 works with 2πkhe(kh, kz) ∝

k
−5/2
h |kz|−1/2). The total energy E is given by E = 2π

∫ ∞
−∞ dkz

∫ ∞
0

khe(kh, kz) dkh for

axisymmetric flow, and the spectrum e(kh, kz) ∝ k
−7/2
h |kz|−1/2 is consistent with forward

transfer of energy from large to small scales. With an infrared cutoff ko in the ẑ-
direction, Cambon et al. (2004) showed that the weak-turbulence theory for |kz|/kh � 1
predicts e(kh, kz) ∝ k−1/2

o |kz|−1/2k−3
h . They developed a closure for |kz|/kh � 1, including

the effects of the polarization Z = 〈b∗
+b−〉. High-resolution 3003 decay simulations of

the closure equations support the anisotropic scaling e(kh, kz) ∝ k−1/2
o |kz|−1/2k−3

h , and
also suggest scaling for the spherically averaged spectrum E(k) ∝ k−3 (see also Bellet
et al. 2004). Notice, however, that the scaling E(k) ∝ k−3 does not reflect a forward
enstrophy cascade of flow confined to the two-dimensional horizontal plane.

3. Three-dimensional flow in a rotating frame
3.1. The governing equations and properties

A non-dimensional form of the Navier–Stokes equations for incompressible flow in a
rotating frame is

∂

∂t
u +

1

Ro
ẑ × u + (∇ × u) × u = −∇P +

1

Re
∇2u + f ,

∇ · u = 0,


 (3.1)

where P is a pressure and f is an external force. The Rossby number Ro and the
Reynolds number Re are given by

Ro =
U

2ΩL
and Re =

UL

ν
, (3.2)

where Ω is the frame rotation rate, and L and U are characteristic length and velocity
scales, respectively.

In the absence of external forcing, the inviscid linear limit of these equations admits
wave solutions (Greenspan 1968) called inertial waves, of the form

u(x, t; k, s) = hs(k) exp

[
i

(
k · x − σs(k)

t

Ro

)]
+ c.c., (3.3)

where c.c. denotes the complex conjugate, k = (kx, ky, kz) is a three-dimensional
wavevector and s = ±1 is the helicity. The eigenmodes hs(k) are called helical modes
and are given by

hs(k) =
1√
2
(k̂ × φ̂ + isφ̂), (3.4)
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with i2 = −1, k̂ = k/|k|, and φ̂ = (k × ẑ)/|k × ẑ|. The dispersion relation for the wave
frequency is

σs(k) = s
kz

k
, (3.5)

where k = |k|. The relation (3.5) is homogeneous with respect to k since σ (ak) = σ (k)
for any scalar a �= 0. For k =(0, 0, kz), expression (3.4) is singular and one may choose
the following modes:

hs((0, 0, kz)) = 1
2
(1 + i ssgn(kz), 1 − i ssgn(kz), 0), (3.6)

where sgn is the sign function. The eigenmodes hs(k) satisfy (i) that k, h1, h−1 form
an orthonormal basis, (ii) hs(k) = h∗

−s(k), (iii) hs(−k) = h∗
s (k) and (iv) ik × hs(k) =

−skhs(k) (i.e. hs(k) is helical) (see Cambon & Jacquin 1989; Waleffe 1992, 1993;
Constantin & Majda 1988).

One may represent u as a sum of inertial waves with amplitudes bs(t; k),

u(x, t) =
∑

k

∑
s = ±1

bs(t; k)hs(k) exp

[
i

(
k · x − σs(k)

t

Ro

)]
, (3.7)

where bs(t; k) = b∗
s (t; −k) for reality. Then, the Navier–Stokes equations (3.1) yield(

∂

∂t
+

k2

Re

)
bsk (k) =

∑
k pq

∑
s p,sq

C
sks psq

k pq b∗
s p

( p)b∗
sq
(q) exp

[
i
(
σsk + σs p + σsq

) t

Ro

]
. (3.8)

Here bsk (k) and σsk are shorthand notations for bsk (t; k) and σsk (k) respectively, and
the first sum is over all triads k pq with k + p + q = 0.† The effect of rotation now
appears in the exponent of the integrating factor in (3.8). The coefficients C

sks psq

k pq are
given by

C
sks psq

k pq =(s pp − sqq)
(
h∗

s p
× h∗

sq

)
· h∗

sk
(3.9)

and they satisfy

C
sks psq

k pq + C
s psqsk

pqk + C
sqsks p

qk p = 0,

skkC
sks psq

k pq + s ppC
s psqsk

pqk + sqqC
sqsks p

qk p = 0

}
(3.10a)

and

C
sks psq

k pq =
[
C

sks psq

−k,− p,−q

]∗
,

[
C

sks psq

k pq

]∗
= − C

−sk,−s p,−sq

k pq . (3.10b)

The two equations in (3.10a), respectively, express energy and helicity conservation by
triad interactions. The first equation in (3.10b) is a reality condition, and the second
shows that the conjugate of the interaction coefficient is the negative of the interaction
coefficient with the opposite helicities. Note that, for a given triad (k, p, q), there are
eight different interactions (sks psq) = (+, +, +), (+, +, −), · · · , (−, −, −) depending on
the helicities of the modes. We use properties (3.10b) in the direct computation of
the nonlinear interactions in wavevector space, in order to simulate the dynamics of
reduced models based on subsets of triad interactions (see § 4).

† One may use
∑

p with q = −k − p instead of
∑

k pq
in (3.8). Then each triad is counted twice

and C
sks psq
k pq is replaced by C

sks psq
k pq /2.
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In the limit Ro → 0 (Ω → ∞), the triad interaction of (3.8) is maximal when the
interaction is resonant, i.e. the wave frequencies satisfy the resonance condition

σsk (k) + σs p( p) + σsq (q) = 0. (3.11)

Resonant triad interactions are not affected by fast rotation since the phase factor in
(3.8) vanishes. The energy transfer of other triad interactions is, on average, reduced
by the non-zero phase factor. With our choice of non-dimensional equations (3.1),
the linear time scale is O(Ro), and exactly resonant triad interactions dominate on
time scales O(1). The dispersion relation (3.5) allows resonant triad interactions, and
the set of all wavevectors resonant with a given wavevector forms a two-dimensional
manifold (a resonant trace) in three-dimensional Fourier space (e.g. the resonant
trace for k = (4, 0, 8) is shown in figure 1 of Smith & Waleffe 1999). For a resonant
triad k pq with kz =0, the interaction coefficient C

sks psq

k pq = 0, so that the mode with
wavevector k = (kx, ky, 0) cannot gain or lose energy directly through resonant triad
interactions (Greenspan 1969; Waleffe 1993; Embid & Majda 1996; Babin et al. 1996,
2000). Note that modes with kz = 0 correspond to z-independent two-dimensional
modes and form a slow manifold with frequency σs(k) = 0. For finite (small) Rossby
numbers, near-resonant triad interactions are important on time scales O(1/Ro),
where near-resonant triads are defined by (3.11) with zero on the right-hand side
replaced by O(Ro) (see (3.13), Benney & Saffman 1966; Newell 1969; Zakharov et al.
1992).†

3.2. Reduced models of three-dimensional rotating flow

In numerical simulations with finite resolution, there is only a finite number of triad
interactions in the numerical domain. Denoting the finite set of all triad interactions
in the numerical domain by IF , the nonlinear term in (3.8) is replaced by the sum
over all triads in IF , and is here denoted by NL(IF ). Generally, given a subset of
triad interactions I, the corresponding nonlinear term over all interactions in I is
denoted by NL(I):

NL(I) =
∑

I

C
sks psq

k pq b∗
s p

(t; p)b∗
sq
(t; q) exp

[
i
(
σsk (k) + σs p( p) + σsq (q)

) t

Ro

]
. (3.12)

For I �= IF (so I is a proper subset of IF ), the analogue of (3.8) obtained by
replacing the nonlinear term NL(IF ) by NL(I) is here referred to as a reduced
model.

The role of near-resonant triad interactions is the main focus of this paper, and
IR(ε; Ro) denotes the set of all triad interactions satisfying

|σsk (k) + σs p( p) + σsq (q)| � ε Ro (3.13)

for positive ε = O(1). The two-dimensional dynamics among slow modes are also
considered, and I2D is the set of all two-dimensional triad interactions with
kz = pz = qz = 0. The corresponding reduced models are obtained by replacing the
nonlinear term of (3.8) by NL(IR(ε; Ro)) or NL(I2D), respectively. Note that in any
reduced model, we keep all wave amplitudes (all the bs(t; k)), but include a subset
of triad interactions from the nonlinear term NL(IF ). For example, for a reduced
model excluding triad interactions among two-dimensional modes, with the nonlinear

† In Newell (1969), the linear time scale is O(1) and so the time scale for near-resonant triad
interactions is O(1/Ro2).
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term denoted NL(I) = NL(IF − I2D), two-dimensional modes with kz = 0 can gain
or lose energy by interacting with non-two-dimensional modes having kz �= 0.

The quadratic nonlinearity in the discretized equations with nonlinear term NL(IF )
can be computed efficiently by the standard pseudo-spectral technique using fast
Fourier transforms (FFTs) with e.g. the 2/3 rule for dealiasing (see e.g. Canuto et al.
1988; Boyd 2001). However, when the nonlinear term is modified to include only a
subset of triads, the modified nonlinearity must be calculated directly in spectral space.
Both time and storage costs for such direct calculations are very expensive, and thus
numerical simulations of the reduced models are restricted to very low resolutions
(our three-dimensional calculations use 643 Fourier modes). Computational time is
the limiting factor. However, storage costs are also high if one saves the complex
interaction coefficients C

sks psq

k pq . In the next section, we provide more specifics for our
computations of reduced dynamics. The reader who is not interested in such details
should proceed to § 5.

4. Direct calculation of the nonlinear interactions in wave space
4.1. The strategy for a quadratic nonlinearity in two dimensions

The direct calculation of the modified nonlinearity in reduced models requires (i)
identifying the subset of triads to sum over, (ii) saving the subset and related quantities
(for example, sk, s p, sq , k, p, q and the coefficients C

sks psq

k pq ), and (iii) computing the
sum directly in Fourier space. We discuss (i) and (iii) below.

For simplicity, we first consider a quadratic nonlinearity in two dimensions. The
generalization to three-dimensional rotating flows is discussed in § 4.2. Let the
quadratic nonlinearity be denoted

nl(k) =
∑
k pq

n(k; p, q), n(k; p, q) = Ck pqb
∗( p)b∗(q), (4.1)

where the vectors k, p, q are two-dimensional vectors. The expression n(k; p, q)
is the nonlinear contribution to k through the triad interaction among k, p, and
q; nl(k) is the total nonlinear contribution to k obtained by summing over all p
and q; b(k) and Ck pq are generic two-dimensional analogues of bsk (k) and C

sks psq

k pq
in (3.8). The wave amplitudes b(k) and coupling coefficients Ck pq are assumed to
satisfy the reality conditions (i) b(k) = b∗(−k) and (ii) Ck pq =C∗

−k,− p,−q . We also
assume that (iii) Ck pq =0 if k, p and q are collinear, and (iv) Ck pq = Ckq p (so that
n(k; p, q) = n(k; q, p)). Note that the nonlinear interactions for three-dimensional
rotating flows satisfy the three-dimensional analogues of these assumptions (Waleffe
1992). With the third assumption, the sum in (4.1) can be restricted to non-collinear
triads.

For the pseudo-spectral method over a two-dimensional periodic square, the domain
of wavevectors for an isotropic grid in Fourier space is

K+ = {k = (jx, jy)�k}
{

either jx = 0 and jy = 1, 2, . . . , M

or jx = 1, 2, . . . , M and jy = −M, −M + 1, . . . , M
(4.2)

where �k is the distance between two adjacent wavevectors and M is a positive integer
(Canuto et al. 1988; Boyd 2001). The region K+ is the right-hand grey area in figure 1,
and K− = −K+ = {k : − k ∈ K+}. As a consequence of the reality conditions on b(k)
and Ck pq , only information in K+ is needed to construct the wave field over the entire
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Figure 1. K+ is the domain in Fourier space for the pseudo-spectral method. The triad
k pq is in T + with k < p.

square K+ ∪ K−. Note that M is usually chosen as one third of the resolution size to
avoid aliasing by using the so-called 2/3 rule.

Let T + be the set of all non-collinear triads with two wavevectors in K+ and the
remaining wavevector in K−. For example, the triad in figure 1 is in T + because
k, p ∈ K+ and q ∈ K−. Let T − be the set of triads whose Fourier conjugate is in T +:
T − = {k pq : −k,− p,−q ∈ T +}. So, any triad in T − has two wavevectors in K− and
the remaining wavevector in K+. Since any non-collinear triad is in either T + or T −,
the sum for the full nonlinearity in (4.1) is taken over T + ∪ T −.

For T , a given subset of T + ∪ T −, we now describe a numerical procedure
to compute the nonlinear interactions over T . For fixed triad k pq in T ∩ T +,
without loss of generality, k and p are in K+ and q is in K−. Since we need
only mode amplitudes b(k), b( p) and b(−q) with wavevectors in K+, then we need
only compute the nonlinear terms n(k; p, q) = n(k; q, p), n( p; q, k) = n( p; k, q), and
n(−q; −k, − p) = n(−q; − p, −k). Note that n(q; k, p) is not needed because q is not
in the computation domain K+. However, its conjugate n(−q; −k, − p) must be
computed because −q is in K+. Using (4.1) and the reality condition for b(k), the
nonlinear interactions n(k; p, q) and n( p; q, k) are computed as

n(k; p, q) = Ck pqb
∗( p)b(−q),

n( p; q, k) = C pqkb(−q)b∗(k),

}
(4.3)

where b∗(q) is computed using b(−q) since q is not in the computation domain K+.
Finally, n(−q; −k, − p) is computed using reality of Ck pq and the conjugate triad
−k,− p,−q:

n(−q; −k, − p) = C∗
qk pb(k)b( p). (4.4)
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Again, amplitudes b(k) and b( p) with wavevectors in K+ are used for amplitudes
b∗(−k) and b∗(− p) with wavevectors in K−, respectively. Expressions (4.3) and (4.4)
are combined to compute the nonlinear interactions for the triad k pq and its
conjugate triad −k,− p,−q , using only modes with wavevectors in K+ (b(k), b( p), and
b(−q)).

It remains to discuss how to identify the triads in T , and it is enough to find
the triads in T ∩ T + because of the reality conditions. This requires a systematic
procedure to search over all triads in T +. For this purpose, an order is introduced
between wavevectors in K+:

k < p if either kx < px, or kx = px, ky < py. (4.5)

Then, for each triad k pq in T + and without loss of generality, one can assume that
k and p are in K+ with k < p and q = −k − p (e.g. see the triad in figure 1). The
procedure to span T + is now straightforward: for each k in K+, loop over all p in
K+ with p > k. If the triad k pq in T + is also an element of T , then store the triad
and its interaction coefficients.

• for each k ∈ K+,
◦ for each p ∈ K+ and p > k,

— Let q = − k − p.
— Check k, p,q ∈ T .

– if yes, store k, p,q , and its interaction coefficients
◦ end of p for-loop

• end of k for-loop
Note that if p = k, then the triad k pq is collinear, and the nonlinear interactions
among the triad are identically zero. Thus, it is sufficient to consider p that is strictly
greater than k.

4.2. Extension to three-dimensional rotating flows

Below we extend the ideas of the previous section to compute the nonlinear
interactions directly in three-dimensional rotating flows. To this end, it is convenient
to represent both the velocity u and the nonlinear term u × (∇ × u) as a sum of helical
modes

u(x, t) =
∑

k

∑
s

as(t; k)hs(k) exp(ik · x),

(u × (∇ × u))(x, t) =
∑

k

∑
s

nls(t; k)hs(k) exp(ik · x).


 (4.6)

Here, as(t; k) = bs(t; k) exp(−iσs(k)t/Ro) includes the phase factor (see (3.7)). Then,
the nonlinear interaction nlsk (t; k) reads

nlsk (t; k) =
∑
k pq

∑
s p,sq = ±1

n(k, sk; p, s p, q, sq),

n(k, sk; p, s p, q, sq) = C
sks psq

k pq a∗
s p

(t; p)a∗
sq
(t; q)


 (4.7)

where the coefficient C
sks psq

k pq is given by (3.9).

For three-dimensional flows, K+ corresponds to the set of wavevectors k with either
(i) kx > 0, (ii) kx = 0 and ky > 0, or (iii) kx = ky =0 and kz > 0. As above in § 4.1,
first consider a fixed triad k pq with k and p in K+. Similar to (4.3) and (4.4), the
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(sk, s p, sq)-type nonlinear interactions at k, p, and −q are computed by

n(k, sk; p, s p, q, sq) = C
sks psq

k pq a∗
s p

( p)asq (−q)

n( p, s p; q, sq, k, sk) = C
s psqsk

pqk asq (−q)a∗
sk
(k)

n(−q, s p; −k, sk, − p, s p) =
[
C

sqsks p

qk p

]∗
ask (k)as p ( p).


 (4.8)

Once the interaction coefficients C
sks psq

k pq , C
s psqsk

pqk , and C
sqsks p

qk p are computed, the
second property of (3.10b) allows one to compute the (−sk, −s p, −sq)-type nonlinear
interactions as

n(k, −sk; p, −s p, q, −sq) = −
[
C

sks psq

k pq

]∗
a∗

−s p
( p)a−sq (−q)

n( p, −s p; q, −sq, k, −sk) = −
[
C

s psqsk

pqk

]∗
a−sq (−q)a∗

−sk
(k)

n(−q, −s p; −k, −sk, − p, −s p) = −C
sqsks p

qk p a−sk (k)a−s p ( p).


 (4.9)

For example, if the (sk, s p, sq)-type interaction of a triad k, p,q is near-resonant, then
the (−sk, −s p, −sq)-type interaction is also near-resonant, and (4.9) allows one to

compute the (−sk, −s p, −sq)-type interaction without explicitly computing C
−sk,−s p,−sq

k pq ,

C
−s p,−sq ,−sk

pqk , and C
−sq ,−sk,−s p

qk p . Finally, one may order wavevectors in T + as

k < p if either kx < px, or kx = px, ky < py, or kx = px, ky = py, kz <pz,

and span T + by looping over all p in K+ with p > k.
As a simple test, we calculated the inviscid, unforced dynamics of (+, +, +)-type

and (−, −, −)-type interactions for the resonant triad k =(4, 0, 8), p = (6, 0, −3), and
q =(−10, 0, −5), and for frame rotation rate Ω = 1. In other words, the full nonlinear
term is replaced by NL(I) with

I = {(+, +, +)-type and (−, −, −)-type interactions among k, p, and q fixed}.
In figure 2, the solid lines are the real (a) and imaginary (b) parts of amplitudes b+(k),
b+( p), and b+(q) from numerical simulation of the reduced model with NL(I). The
code is based on the dimensional versions of (3.1), (3.7)–(3.9), with full nonlinearity
replaced by the dimensional version of (3.12). In figure 2, we plot the dimensional time
and amplitudes b+, where the dimensions of b+ are length/time. Since the (+, +, +)-
type interaction is decoupled from the (−, −, −)-type interaction, the amplitudes
b+(k), b+( p), and b+(q) are governed by the triad system

∂tb+(k) = C+++
k pq b∗

+( p)b∗
+(q),

∂tb+( p) = C+++
pqk b∗

+(q)b∗
+(k),

∂tb+(q) = C+++
qk p b∗

+(k)b∗
+( p).


 (4.10)

Equations (4.10) are solved independently using the same initial conditions as the
reduced model, and the amplitudes are plotted using symbols in figure 2. One can see
that the results of the reduced model calculation match the results of solving (4.10).

5. Numerical results
As mentioned above, the numerical codes are based on the dimensional versions of

(3.1), (3.7)–(3.9) and (3.12). The Fourier transform of the momentum equation with
full nonlinear term NL(IF ) or modified nonlinear term NL(I) is integrated forward
in time using the third-order Runge–Kutta time-stepping scheme. For all calculations,
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Figure 2. A test case: the nonlinear term is modified to include only two interactions:
(+,+,+)-type and (−, −, −)-type interactions among k = (4, 0, 8), p = (6, 0, −3), and
q = (−10, 0, −5). (a) and (b) Respectively, the real and imaginary parts of b+(k) (star), b+( p)
(circle), and b+(q) (triangle). Solid lines are computed using (4.7)–(4.9). Symbols are computed
from (4.10).

the physical domain is a triply periodic cube with volume (2π)3, and the initial velocity
is u(x, t) = 0. Incompressibility is enforced at each time step by projection onto the
(incompressible) linear eigenmodes (3.4) (see Smith & Waleffe 2002). The linear wave
and viscosity terms are treated using an integrating factor technique. The nonlinear
interactions NL(IF ) are calculated in physical space using FFTs, while the nonlinear
interactions of reduced dynamics are computed directly in Fourier space using the
procedure discussed in § 4.

Following Smith & Waleffe (1999), at times t > 0, a white noise force adds energy at
an average rate εf ≈ 1. The forcing spectrum F (k) is Gaussian with peak wavenumber
kf and standard deviation σ =1, given by

F (k) = εf

exp(−0.5(k − kf )2/σ 2)

(2π)1/2σ
. (5.1)

The dissipation at small scales is modelled by a hyperviscosity term −νH ∇2pH with
pH = 8 in place of the normal viscosity term ν∇2. The purpose of using hyperviscosity,
which turns on much more abruptly than the gradual increase of normal viscosity at
small scales, is to eliminate as much as possible the effects of viscosity at intermediate
scales, thus extending the turbulence inertial range(s). The numerical simulations are
characterized by the following Rossby number Ro and Reynolds number ReH :

Ro =

(
εf k2

f

)1/3

2Ω
, ReH =

(
εf k2

f

)1/3

νHk
2pH

f

. (5.2)

These expressions are obtained by using the length scale L = k−1
f , velocity scale U =

(εf /kf )1/3 and time scale L/U = (εf k2
f )−1/3 in (3.2). Here we present simulation results

of full and reduced dynamics using dimensional parameter values kf = 10, εf ≈ 0.7,
and Ω = 24, with corresponding Rossby number Ro = 0.086. We use a dynamic
hyperviscosity given by νH = γ (E(kmax)/kmax)

1/2k
2−2pH
max , where E(kmax) is the energy in
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the highest wavenumber shell. The maximum wavenumber kmax is given by kmax = N/3
for resolution N3 and dealiasing using the 2/3 rule. In such a scheme, the non-
dimensional proportionality coefficient γ is usually taken to be approximately one,
and is arbitrarily set to γ = 2.5 in our code. At the beginning of each run, E(kmax)
and νH grow until statistical stationarity is established for wavenumbers higher than
the forcing wavenumbers. Then the energy dissipation rate ε> ≡ νH

∑
k k2pH E(k) is

also statistically steady. For the full simulation with N =64, νH and ε> grow to
the average values νH ≈ 1.1 × 10−20 and ε> ≈ 0.53, giving a dissipation wavenumber
kd ≡ (ε>/ν3

H )1/46 ≈ 19.8 (see figure 3).
In the following sections, we present four types of plot: (i) energy spectra vs.

wavenumber, (ii) total energy in large scales with 0 � k � 5 vs. time, (iii) contours of
the vertical vorticity corresponding to the vertically averaged velocity field (in the
(x, y)-plane), and (iv) probability density functions (PDFs) of vertical vorticity in
vertically averaged velocity fields. On plots of energy spectra, all wavenumbers and
spectra are left dimensional for ease of locating the forcing wavenumber kf = 10 and
the dissipation wavenumber kd ≈ 19.8 (see figure 3). On all other plots, time is scaled
by (εf k2

f )−1/3, total energy is scaled by (εf /kf )2/3, and vorticity is scaled by f =2Ω .

5.1. Energy transfer into two-dimensional large-scale motions

For large Rossby numbers (weak rotation), the results of 1283 and 2003 simulations
show that energy input from three-dimensional isotropic forcing is transferred to
smaller scales and dissipated by viscosity. However, if the Rossby number is smaller
than an O(1) critical value, energy is transferred to scales larger than the forced
scales (Smith & Waleffe 1999, see also Hossain 1994). For moderately small values
of the Rossby number below critical, three important features of the flow are (i) the
generation of two-dimensional large scales from three-dimensional forcing, (ii) a
large-scale two-dimensional energy spectrum scaling close to E(kh; kz = 0) ∝ k−3

h , and
(iii) the dominance of cyclonic vortices. The large-scale spectrum E(kh; kz = 0) ∝ k−3

h

of the three-dimensional rotating flow is steeper than the two-dimensional spectrum
E(kh) ∝ k

−5/3
h associated with the energy range in isotropic two-dimensional two-

component turbulence (Kraichnan 1967; see also Smith & Yakhot 1994). As
previously mentioned, all reduced models are restricted to low resolution (643 Fourier
modes) by the time cost of direct spectral calculation of the quadratic nonlinearity.
For a fair comparison, the full equations with nonlinearity NL(IF ) are simulated
with resolution 643 to establish that the above three features of the large-scale flow
are captured with lower resolution (figures 3–6).

Figure 3 compares energy spectra for the full simulation with resolution 643 Fourier
modes at Rossby number Ro = 0.085. The time t = 69 is toward the end of the
simulation. Since we do not use large-scale dissipation, we stop all simulations when
energy has populated the lowest wavenumber k =1, but before energy has accumulated
in k = 1 above the level consistent with scaling E0(kh) ≡ E(kh; kz = 0) ∝ k−3

h (or

E0(kh) ∝ k
−5/3
h for the reduced model including only two-dimensional interactions).

All results shown here are insensitive to the exact stopping time. The shell-
integrated spectrum E(k) (solid line) is obtained by summing the energy of all
modes with wavenumber in the three-dimensional shell [k − �k/2, k + �k/2], where
k = (k2

x + k2
y + k2

z )
1/2. The spectrum E0(kh) ≡ E(kh; kz = 0) (dashed line) is the energy

spectrum of modes with no vertical variation, obtained by summing over modes with
vertical wavenumber kz = 0 and horizontal wavenumber kh in the two-dimensional

shell [kh − �kh/2, kh + �kh/2], where kh =
√

k2
x + k2

y . The total energy E can be found

by summing over all k: E =
∑

k E(k), or equivalently E =
∑

kh

∑
kz

E(kh, kz). In most
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Figure 3. Energy spectra for the full simulation at time t =69 (resolution 643 Fourier modes).
The solid curve is the three-dimensional energy spectrum E(k) and the dashed curve is the
two-dimensional energy spectrum E0(kh) ≡ E(kh; kz = 0). The dashed line with stars is the
energy spectrum Ew

0 (kh) ≡ Ew(kh; kz = 0) corresponding to the vertical component of velocity
with kz = 0. The solid line with circles is the energy spectrum Econe(k) corresponding to modes
with wavevector in the cone defined by kh/|kz| < 1.

figures, we plot E(kh, kz) for one value of kz, namely kz =0, since the modes with
kz = 0 contain almost all of the large-scale energy at long times in the 1283 and
2003 simulations, and the modes with kz �=0 contained negligible energy at scales
larger than the forcing scales (Smith & Waleffe 1999). In figure 3, a comparison
between E(k) (solid) and E0(kh) = E(kh; kz = 0) (dashed) shows again that the large
scale energy is in two-dimensional modes with kz = 0, while the small scale energy is in
three-dimensional modes, where large scale and small scale are relative to the forced
scales. In figure 3, we also plot the spectrum of the vertical component of velocity
with kz =0, Ew

0 (kh) ≡ Ew(kh; kz = 0) (dashed line with stars). The low energy level of
Ew

0 (kh) compared to E0(kh) (the energy spectrum of all velocity components with
kz = 0) shows that most of the large-scale flow is not only two-dimensional, but also
two-component, with energy predominantly in the horizontal velocity components
with kz = 0. The fourth spectrum on figure 3, denoted Econe(k) (solid line with circles),
is the spectrum of modes with wavevectors in the cone kh/|kz| < 1 about the ẑ-axis.
The low level of Econe(k) compared to E0(kh) at large scales highlights the dominance
of large-scale two-dimensional modes as compared to modes with strong vertical
variation. Recall that the horizontal modes having kz = 0 cannot receive energy by
exactly resonant interactions with three-dimensional modes having kz �= 0, but our
results show that kz = 0 modes do receive energy from near-resonant interactions
in simulations at moderate Rossby number (see § 5.1.1). Thus the kz = 0 modes are
more dominant in our simulations than in the weak turbulence and closure theories
(Galtier 2003; Cambon et al. 2004).

Figure 4 compares E(k) (solid) and E0(kh) ≡ E(kh; kz = 0) (dashed) for the three-
dimensional rotating flow to the two-dimensional energy spectrum E0(kh) (dashed)
for the reduced model including only two-dimensional interactions (I2D). The latter
reflects the isotropic two-dimensional inverse cascade. A k−3 line is also shown for
reference. The transfer of energy to large scales by purely two-dimensional interactions
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Figure 4. Energy spectra for the full simulation at time t = 69 (resolution 643 Fourier modes).
The solid curve is the three-dimensional energy spectrum E(k) and the dashed curve is
the two-dimensional energy spectrum E0(kh) ≡ E(kh; kz = 0). The lower dotted curve is the
two-dimensional energy spectrum E0(kh) at time t = 105 for the reduced model including only
two-dimensional interactions, reflecting the isotropic two-dimensional inverse cascade.

is dramatically slower than in the full simulation including all interactions (figure 7).
Thus we have chosen to plot the spectrum for purely two-dimensional interactions
at the later time t = 105, when a comparable number of low-wavenumber modes
has been populated, so that the difference in spectral steepness is more obvious.
Even at the low resolution of 643 Fourier modes, it is clear that the large-scale
two-dimensional modes of the three-dimensional rotating flow have more energy
and a steeper spectrum than the large-scale two-dimensional modes of the purely
two-dimensional flow.

Figure 5 shows contours of the vertical vorticity for the vertically averaged velocity,
obtained by filtering out three-dimensional modes with kz �=0, or equivalently by
averaging over z. Figure 6 shows the PDF of vertical vorticity in the ẑ-averaged
velocity field at times t = 35 and t = 69 (the latter time matches the spectra of figure 4
and the physical space figure 5). The vortex regions have been identified using the
criterion Q = uxvy − uyvx > 0 for a vortex region in two dimensions (see Jeong &
Hussain 1995 and references therein). Here all PDFs are sampled over points (x, y)
with Q(x, y) > (1/4) max Q. MATLAB subroutine ‘ksdensity’ with the smoothing
factor 0.02 is used to generate all PDFs.

One sees that all the important features of the higher-resolution simulations are
observed in figures 3–6, corresponding to 643 Fourier modes. Thus we are confident
that study of reduced models, even at low resolution of 643 Fourier modes, can
give insight into the mechanisms responsible for anisotropic energy transfer from
isotropic three-dimensional small-scale fluctuations to two-dimensional large-scale
cyclonic vortical columns.

5.1.1. Near-resonant and non-resonant triad interactions

Although resonant triad interactions cannot transfer energy directly from wave
modes to slow two-dimensional modes with kz = 0, they may indirectly play an
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Figure 5. Contours of the vertical vorticity of the ẑ-averaged velocity at t = 69 for the full
simulation. Black indicates strong vorticity, and cyclones (anticyclones) are encircled by solid
(dashed) contours. Anticyclones are also labelled by the letter a.
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the full simulation.
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important role in the generation of large-scale two-dimensional modes. Analysis of a
single resonant triad with one forced mode shows that resonant triads transfer energy
toward smaller |kz|/k (Smith & Waleffe 1999; Majda, Timofeyev & Vanden-Eijnden
1999, 2001; see also Waleffe 1993). It is important to note that resonant traces are
two-dimensional manifolds with measure zero in infinite resolution, and that on any
finite grid, there are few exact three-dimensional resonant triad interactions, and
even fewer with three non-zero coupling coefficients C

sks psq

k pq , C
s psqsk

pqk , and C
sqsks p

qk p . In
a three-dimensional triad, two of the wavevectors lie out of the horizontal plane
(kz =0). For our simulation grid, there are 77 243 296 triads, and thus the number
of all triad interactions is 77 243 296 × 8 = 617 946 368, since there are eight types of
interactions depending on the mode helicities. There are only 2152 ±(+, +, +)-type, 96
±(+, +, −)-type , 68 ±(+, −, +)-type, and 28 ±(+, −, −)-type three-dimensional exact
resonant interactions between modes with three-dimensional wavevectors. Thus the
total number of such interactions is 4688, including all helicity combinations, or only
7.5 × 10−4% of all triad interactions. Of these 4688 exact three-dimensional resonant
interactions, only 264 have all three non-zero coupling coefficients; many correspond
to equilateral triangles with all zero coupling coefficients, and some others correspond
to resonant triads with one two-dimensional leg, and zero coupling coefficient for
the two-dimensional mode. The numbers above are calculated numerically by looping
over wavevectors as described in § 4. If the sum of frequencies for a triad is sufficiently
small, the condition for exact resonance is tested analytically.

Exactly resonant interactions dominate for Ro → 0.1; however in the present study,
we consider Rossby numbers Ro ≈ 0.1. For these Rossby numbers, numerical and
laboratory experiments suggest that near-resonant triad interactions and/or higher-
order resonant interactions are relevant (see § 1). Near-resonant triads are defined by
(3.13) with ε = O(1), and their contribution dominates on times T =O(1/Ro) (Newell
1969). A plausible scenario is that three-dimensional near resonances transfer energy
toward the two-dimensional plane, and then near-two-dimensional interactions (which
are also near-resonant) continue the formation of large-scale cyclonic vortices. We
show below that including all near resonances (both three-dimensional and near-two-
dimensional near resonances) leads to more efficient energy transfer to large scales
and stronger symmetry breaking than only near-two-dimensional near resonances.
When near resonances are important (e.g. for Ro ≈ 0.1 as shown below), then low-
resolution simulations are restricted to moderately small Rossby numbers so that the
number of near resonances captured by the finite grid is sufficient (see also Pushkarev
& Zakharov 2000; Connaughton, Nazarenko & Pushkarev 2001). Although the latter
statement begs to be quantified, such a study is beyond the scope of the present
paper.

Now we present the results for reduced models of near-resonant triad interactions
IR(ε; Ro) with ε = O(1) at small but finite Ro =0.086, with IR defined in § 3.2. We
ask how well the reduced dynamics of resonant triad interactions can approximate
the original dynamics including all triad interactions. Figure 7 shows the evolution
of energy in the large scales 0 � k � 5 for the full simulation (solid), compared to the
reduced models with ε = 0.3 (circles) and ε = 1.0 (crosses). The modified nonlinear
terms are now NL(IR(ε; Ro)) for ε = 0.3 and ε = 1.0, and all other parameters
are same as for the full simulation. In terms of numbers of triad interactions,
IR(ε = 0.3; Ro = 0.086) contains about 3.5% of all triad interactions in IF , and
IR(ε = 1.0; Ro = 0.086) contains about 12% of all triad interactions in IF . The
dashed line is the large-scale energy evolution for the reduced model with nonlinear
term NL(I2D), keeping only two-dimensional interactions, and thus reflects the purely
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Figure 7. Evolution of energy in the large scales 0 � k � 5 for the full simulation (solid), the
reduced models including near resonances with ε = 0.3 (circles) and ε = 1.0 (crosses), and the
reduced model including only two-dimensional interactions (dashed).

two-dimensional inverse cascade. The purely two-dimensional interactions I2D are
about 0.6% of all triad interactions. Note that the near resonances IR(ε; Ro) contain
I2D (since two-dimensional interactions are exactly resonant), and also include other
three-dimensional triad interactions between two-dimensional modes with kz = 0 and
three-dimensional modes with kz �= 0. In figure 7, one sees the dramatically increased
energy transfer to large scales for the full simulation compared to the two-dimensional
inverse cascade. One also sees that the reduced models including only near resonances
for ε = 0.3 and ε = 1.0 transfer energy to large scales more efficiently than the
full simulation including all triad interactions. Thus non-resonances act to reduce
energy transfer to large scales. The energy transfer to large scales for near-resonant
interactions (IR(0.1; 0.086)) and (IR(0.2; 0.086)) (not shown) is faster than for the
two-dimensional inverse cascade, but slower than for the full simulation. For 0 � ε � 1,
the rate of transfer to large scales increases as ε increases, but this trend must reverse
itself for some ε > 1 as non-resonances are progressively included.

Since multiple-scales analysis does not select a particular value of ε, the value ε = 1.0
seems the natural choice to define near-resonant interactions by (3.13). However,
figure 7 shows that for ε = 0.3, the rate of energy input into large scales is not dramati-
cally different from the rate for the full simulation. This is remarkable given that
only 3.5% of triad interactions are included in IR(0.3, 0.086). Therefore it is worth
comparing the spectra for the reduced systems of near resonances with ε = 0.3
(figure 8) and of non-resonances with ε = 0.3 (figure 9) to the full system, in order to
make the point that a small number of near resonances leads to the scaling of the
long-time large-scale spectra E(k) ≈ E(kh; kz =0) close to E(kh; kz =0) ∝ k−3

h . Figure 8
shows that, for the same time (t =69), the large-scale spectra for near resonances with
ε = 0.3 are similar to the large-scale spectra for the full simulation (see also figure 4).
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Figure 8. E(k) for the full simulation (solid), compared to E(k) (dashed) and E0(kh) =
E(kh; kz = 0) (dotted) for near resonances with ε = 0.3. All spectra are at time t = 69.
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Figure 9. E(k) for the full simulation (solid), compared to E(k) for non-resonances with
ε = 0.3 (dashed). Both are at time t = 69.

In sharp contrast, figure 9 shows that there is negligible energy at large scales and
long times for the reduced model of non-resonances with ε =0.3, which includes
96.5% of all triad interactions. For the run of figure 9, the nonlinear term in (3.8) was
replaced by NL(IF −IR(ε; Ro)) for ε = 0.3 and Ro = 0.086 (with all other parameters
values the same as for the full simulation). Most of the energy input by the forcing
is transferred to smaller scales and dissipated by the hyperviscosity. Clearly, non-
resonances alone do not generate two-dimensional large scales. This is not surprising
since interactions within the two-dimensional plane are excluded (see § 5.1.2).
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Figure 10. Contours of the vertical vorticity of the ẑ-averaged velocity at t = 52 for the
reduced model of near resonances with ε = 0.3. Black indicates strong vorticity, and cyclones
(anticyclones) are encircled by solid (dashed) contours. Anticyclones are also labelled by the
letter a.

In figure 8, notice that there is a higher level of energy near the forced wavenumbers
(k ≈ kf =10) compared to the full system or compared to the reduced models including
only non-resonances (figure 9). This is because there is only a small number of triads
available to pump energy out of the forced modes into other scales. However, this
small number of near-resonant triad interactions is apparently enough to extract
a portion of the energy from the forced modes to generate two-dimensional large-
scale motions. The energy input rates associated with the reduced models of near
resonances may be enhanced because of the elevated energy in the forced modes. The
large amount of energy near the forcing scale leads to more fine-scale structure than
is observed in the full simulation. Since we are interested in the large-scale structure,
and since most of the large-scale energy is in two-dimensional two-component modes
(u, v) with kz =0, it is instructive to view the vertical vorticity after filtering three-
dimensional motions with kz �= 0. The vertical vorticity of the ẑ-averaged velocity
(figure 10) shows large-scale two-dimensional vortices; however, as shown by figure 11,
there is now a slight bias toward anticyclones, rather than the strong dominance of
cyclones in the full simulation (figures 6 and 14). In figure 11, the time t = 52 was
chosen for comparison with figure 14. We did not observe cyclone dominance for
reduced models of near resonances with values of ε � 0.5. However, the reduced
model of near resonances with ε =1.0 shows strong symmetry breaking in favour of
cyclones comparable with the full system (see figures 13 and 14).

The value ε =1.0 in (3.13) seems natural to define near-resonant interactions.
Next we show that with ε = 1.0, the reduced model of near-resonant interactions
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Figure 11. PDF of vertical vorticity in the ẑ-averaged velocity for the reduced
model of near resonances with ε = 0.3 at time t = 52.
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Figure 12. E(k) for the full simulation (solid), compared to E(k) (dashed) and
E0(kh) = E(kh; kz =0) (dotted) for near resonances with ε = 1.0. All spectra are at time t = 52.

reproduces all distinguishing features of the full simulation at Ro = 0.086, including
strong cyclone dominance. First, figure 12 compares spectra E(k) and E(kh; kz = 0)
for near resonances with ε = 1.0 to the spectrum E(k) for the full simulation. Since
the rate of energy transfer to large scales is faster for near resonances with ε = 1.0
than for the full simulation, the time t = 52 is chosen for the comparison of spectra.
The scaling E(k) ≈ E(kh; kz = 0) close to E(kh; kz = 0) ∝ k−3

h is captured by the reduced
model. Notice that there is more energy in wavenumbers near the forced wavenumbers
compared to the full simulation, but not nearly the excess seen in the reduced model
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Figure 13. Contours of the vertical vorticity of the ẑ-averaged velocity at t = 52 for the
reduced model of near resonances with ε = 1.0. Black indicates strong vorticity, and cyclones
(anticyclones) are encircled by solid (dashed) contours. Anticyclones are also labelled by the
letter a.

of near resonances with ε = 0.3 (see figure 8). Contours of the vertical vorticity of
the ẑ-averaged velocity (figure 13) show clearly the cyclone dominance in the reduced
model. A comparison of the PDFs of vertical vorticity (figure 14) shows that the
reduced model has even higher values of cyclonic vorticity than the full simulation.
Different realizations of the reduced model also showed symmetry breaking in favour
of cyclones at least as strong as seen in the full simulation.

5.1.2. The role of two-dimensional interactions

With random forcing at small scales, the two-dimensional large scales of three-
dimensional rotating turbulence are distinguished from the large scales of two-
dimensional non-rotating turbulence by (i) steeper energy spectra, and (ii) the
dominance of cyclones over anticyclones. It is well known that two-dimensional
turbulence does not exhibit cyclone/anticyclone asymmetry (McWilliams 1984, see
also Smith & Yakhot 1994). Thus an inverse cascade in the two-dimensional plane
alone does not fully explain the generation of two-dimensional large-scale motions
in three-dimensional rotating flows, at least at moderate Rossby numbers where
numerical simulations can adequately resolve near resonances. Nevertheless, two-
dimensional interactions are crucial for the generation of large scales. Figure 15 shows
energy spectra for the dynamics without two-dimensional interactions (nonlinear term
NL(IF − I2D)) and the dynamics of two-dimensional interactions only (nonlinear
term NL(I2D)). When purely two-dimensional interactions are removed from the full
dynamics, the generation of two-dimensional large scales is prevented, indicating the
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Figure 14. PDF of vertical vorticity in the ẑ-averaged velocity field at t =52. Near
resonances with ε = 1.0 (solid) compared to the full simulation (dashed).
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Figure 15. E(k) (solid) and E0(kh) = E(kh; kz = 0) (dashed with circles) for the reduced model
with two-dimensional interactions removed (IF − I2D). Energy spectrum E0(kh) (dashed
with stars) for the reduced model with two-dimensional only (I2D). Energy spectrum E0(kh)
(dashed) for the full simulation. All spectra are at time t = 69 except the reduced model of
two-dimensional interactions only, which is at t = 105.

importance of the inverse cascade in the two-dimensional plane. As already noted,
purely two-dimensional interactions I2D generate large scales with much lower energy
compared to the full dynamics, and the energy spectrum scales close to E0(kh) ∝ k

−5/3
h .

Finally, the PDF of vertical vorticity (figure 16) for the two-dimensional flow at time
t = 105 indicates symmetry between cyclones and anticyclones, also as expected.
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Figure 16. PDF of vertical vorticity in the ẑ-averaged velocity for two-dimensional
interactions at time t =105.

θw 10◦ 15◦ 20◦ 30◦ 40◦

δ 2.02 3.04 3.98 5.82 7.4873
% interactions 1.98% 4.35% 7.95% 17.56% 26.97%

Table 1. The relation between δ, θw , and the percentage of near-two-dimensional triad
interactions in the wedge defined as (5.3) for Ro = 0.086 and resolution 643 Fourier modes.

5.1.3. Near two-dimensional runs

In this section we compare the dynamics of near-resonant triad interactions to the
dynamics of near-two-dimensional triad interactions. The near-resonant interactions
defined by (3.13) with ε = O(1) include interactions among three near-two-dimensional
modes, all with small |kz|. However, other near-resonant interactions include funda-
mentally three-dimensional modes with |kz| large. Here we ask if interactions between
near-two-dimensional modes are primarily responsible for the large-scale energy
spectra E(k) ≈ E(kh; kz =0) ∝ k−3

h and the generation of cyclones, or if near-resonant
interactions including three-dimensional modes play an important role. To this end,
we consider reduced models including only modes with wavenumber in an azimuthal
wedge symmetric about the two-dimensional plane,

|σs(k)| =

∣∣∣∣kz

k

∣∣∣∣ � δ Ro (5.3)

for a positive δ. This wedge has the half-angle θw = sin−1(δ Ro) measured from
the two-dimensional plane. Table 1 summaries the relations between δ, θw , and the
percentage of near-two-dimensional triad interactions in each wedge. This reduced
dynamics can be simulated by setting to zero, at each time step, the amplitudes of all
modes outside the wedge.

Figure 17 compares the time evolution of energy in the large scales with
wavenumber 0 � k � 5, for the near-two-dimensional runs with θw =15◦ and θw =40◦,
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Figure 17. Evolution of energy in the large scales 0 � k � 5 for the full simulation (solid),
near resonances with ε =0.3 (circles) and ε = 1.0 (crosses), near-two-dimensional with θw = 15◦

(dash-dot) and θw = 40◦ (triangles), and two-dimensional interactions only (dashed).

the full simulation, the near-resonance runs with ε =0.3 and ε =1.0, and the two-
dimensional-only run. Notice that the near-two-dimensional run with θw =15◦ has
slightly more triad interactions (4.35% of the total number) than the near-resonances
run with ε = 0.3 (3.5%), but the rate of energy input to large scales for the former
(dash-dot) is much slower than that for the latter (circles). This demonstrates that
near resonances including three-dimensional interactions are much more efficient than
near-two-dimensional interactions alone for the generation of large-scale motions. In
fact, the rate of energy input to large scales for the near-two-dimensional runs with
θw � 40◦ is slower than that of the full simulation, while the rate for near resonances
with 0.3 � ε � 1.0 surpasses the rate for the full simulation.

Figure 18 compares spectra for the full simulation to spectra for near-two-
dimensional interactions with wedge half-angle of 40◦, including about 27% of
triad interactions (compare also to figures 8 and 12). At the same time t = 69, even
for this rather big wedge, the large scales of the near-two-dimensional run have less
energy than the large scales of the full simulation. Also interesting is the fact that
the near resonances with ε = 1.0 (12% of triad interactions) do a much better job of
extracting energy from the forced modes than the near-two-dimensional with θw = 40◦

(27%). This observation is consistent with the emerging picture that three-dimensional
near resonances efficiently transfer energy from the three-dimensional forced modes
to larger-scale near-two-dimensional modes, and then near-two-dimensional modes
(which are also near-resonant) continue the process of large-scale structure formation.
Finally, figure 19 shows that symmetry breaking between cyclones and anticyclones
is relatively weak for near-two-dimensional interactions in the (large) wedge with
half-angle 40◦ (solid), compared to the full simulation (dashed), and also compared
to the run of near resonances with ε = 1.0 (figure 14). Thus three-dimensional near
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Figure 18. E(k) (solid) and E0(kh) = E(kh; kz =0) (dashed) for the full simulation, compared
to E(k) (solid with symbols) and E0(kh) (dashed with symbols) for near-two-dimensional
interactions with θw = 40◦. All spectra are at time t = 69.
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Figure 19. PDF of vertical vorticity in the ẑ-averaged velocity field at t = 69.
Near-two-dimensional with θw = 40◦ (solid) compared to the full simulation (dashed).

resonances appear to be a critical factor in the symmetry breaking and cyclone
dominance observed in rotating flows at moderate Rossby number.

6. Summary and discussion
The goal of the study is to identify the mechanisms responsible for the energy

transfer to large scale and the formation of large-scale cyclonic vortical columns
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in three-dimensional homogeneous rotating turbulence. We perform numerical
simulations, using a random force at intermediate scales to inject energy at a constant
average rate. Simulations of the full equations of motion are compared to simulation
of several reduced models, which include only a subset of all possible triad interactions
in Fourier space. When only a subset of triad interactions is retained, then FFTs
can no longer be used for efficient calculation of the nonlinear term, and thus all
simulations are restricted to 643 Fourier modes. The Rossby number for the results
shown here is fixed at Ro = 0.086, small enough for nonlinear two-dimensionalization
in the full system, but large enough that an adequate number of near resonances is
captured by the low-resolution grid. Triad interactions in the two-dimensional plane
are crucial for generation of two-dimensional large scales, but are not sufficient to
explain the scaling of the large-scale energy spectra E(k) ≈ E(kh; kz = 0) ∝ k−3

h , nor to
explain the formation of coherent vortical columns and the dominance of cyclones.
The reduced model of near resonances defined by (3.13) with ε =1.0 captures the
large-scale long-time spectral scaling as well as the cyclone dominance. Furthermore,
the model of near resonances with ε = 1.0, including both three-dimensional and
near-two-dimensional near resonances, is more efficient than models including only
near-two-dimensional modes with respect to: (i) extraction of energy from three-
dimensional forcing at intermediate scales, (ii) efficient generation of two-dimensional
large scales, and (iii) strong symmetry breaking in favour of cyclones. Our simulations
support the picture that three-dimensional near resonances efficiently transfer energy
from three-dimensional modes to larger-scale near-two-dimensional modes, and then
near-two-dimensional modes (which are also near-resonant) continue the process of
large-scale structure formation (Waleffe 1993; Smith & Waleffe 1999; Majda et al.
1999, 2001). Non-resonances, defined here as the complement to near resonances, act
largely to extract energy from the forced modes and transfer that energy to smaller
scales, where it is dissipated by viscosity. We have performed simulations at two other
sets of parameters (i) kf =10, Ω =38, εf = 0.7 (Ro = 0.054), (ii) kf = 13, Ω = 48,
εf = 0.86 (Ro = 0.055), and all results are consistent with the results shown here for
Ro = 0.086. Finally, we have simulated the reduced model of near resonances on the
β-plane (defined analogously to (3.13) with ε = 1.0), and find the generation of zonal
flows and scaling of the large-scale spectra E(k) ≈ E(ky; kx = 0) ∝ k−5

y (Lee 2003), as
in the full simulation (Chekhlov et al. 1996). The results for reduced models of the
β-plane will be presented separately.

Our reduced models and the weakly nonlinear analysis for small |kz|/kh by Galtier
(2003) and Cambon et al. (2004) predict that the quasi-two-dimensional state of
rotating turbulence at small Ro is different from purely two-dimensional flow. The
asymptotic equations for rapidly rotating flow derived by Julien et al. (1998) also
admit linear waves with frequencies proportional to ±kz/kh, thus assuming |kz| �
kh. The assumption of small |kz| restricts the dynamics to an azimuthal wedge
symmetric about the two-dimensional plane, as in our reduced models including only
near-two-dimensional modes. Our simulations suggest, however, that approximate
equations derived for small |kz| will exhibit weaker symmetry breaking between
cyclones and anticyclones than the full equations and the reduced model including
all near resonances between fast waves with |kz|/k = O(1) (and for ε =1.0).

The present work combines aspects of fundamental turbulence research and
modelling for geophysical applications. Many fundamental studies of forced three-
dimensional turbulence, including rotating and stratified turbulence, focus on the
forward transfer of energy to small scales. For dispersive-wave turbulence, we have
directed our attention to the slow leakage of energy to scales larger than the forcing
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scales (see also Smith & Waleffe 2002). The accumulation of energy in large-scale
coherent structures over long time scales may be relevant to long-time modelling
of geophysical flows. Our work on three-dimensional rotating and stratified flows
suggests that the long-time behaviour of geophysical models depends strongly on
faithful representation of the resonant wave interactions. Models which change
significantly the dispersion relation of the original system may not accurately capture
long-time coherence at large scales.

A case in point is the hydrostatic approximation for kh/|kz| � 1 and f/N � 1: since
the hydrostatic approximation excludes small-scale horizontal motions, it necessarily
alters the characteristics of energy leakage from small to large scales. The mechanisms
for this leakage may be determined by the resonant traces and thus the dispersion
relation. The hydrostatic equations have waves with dispersion relation σh(k) = ±
(N2k2

h + f 2k2
z )

1/2/|kz|, compared to the Boussinesq equations with dispersion relation
σb(k) = ± (N2k2

h + f 2k2
z )

1/2/k. While the latter equations have linear wave frequencies
between the values N and f , the former equations admit diverging linear wave
frequencies when kz/kh → 0, and the resonant traces are highly distorted. One can
argue that modes with |kz| small should not be considered within the hydrostatic
approximation, but they are present in numerical simulations and in physical flows.
The impact of near-resonant wave interactions for long-time geophysical modelling
of rotating and stratified flows will be the subject of future research.
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